Manganese superoxide dismutase is increased in the airways of smokers' lungs.
نویسندگان
چکیده
Oxidant stress is a key mechanism for smoking-induced chronic obstructive pulmonary disease (COPD). Smoking has been shown to upregulate several antioxidant enzymes, with potential effects on the prevention of the disease and/or its progression. Superoxide dismutases (SOD)s are the only enzymes capable of consuming superoxide radicals. The purpose of the present study was to investigate SODs in the lungs of nonsmokers, smokers and COPD patients. Manganese superoxide dismutase (MnSOD), copper zinc SOD (CuZnSOD), and extracellular SOD (ECSOD), were investigated by immunohistochemistry in the airways of 13 nonsmokers, 20 smokers and 22 COPD patients with mild-to-moderate disease. Lung tissue homogenates of three nonsmokers and four smokers were used for Western blot and enzyme activity analysis. The expression of MnSOD was higher in the central bronchial epithelium of smokers with COPD and in the alveolar epithelium of smokers without or with COPD than innonsmokers. Lung MnSOD immunoreactivity, evaluated by Western blotting and specific activity, were 33% and 51% higher, respectively, in smokers than in nonsmokers. No major changes could be observed in lung CuZnSOD or ECSOD immunoreactivities. Manganese superoxide dismutase is elevated in the alveolar epithelium of cigarette smokers, probably due to the increased oxidant burden in smokers' lungs.
منابع مشابه
Site- and cell-specific alteration of lung copper/zinc and manganese superoxide dismutases by chronic ozone exposure.
The antioxidant enzymes copper/zinc (Cu-Zn) and manganese (Mn) superoxide dismutase (SOD) have been implicated in protection of the lungs from oxidant damage. Mn SOD in particular may be related to acquired tolerance in cells following chronic ozone exposure. In order to study these protective and adaptive phenomena in oxidant injury, the cellular location and relative abundance of Mn SOD and C...
متن کاملSuperoxide dismutases in the lung and human lung diseases.
The lungs are directly exposed to higher oxygen concentrations than most other tissues. Increased oxidative stress is a significant part of the pathogenesis of obstructive lung diseases such as asthma and chronic obstructive pulmonary disease, parenchymal lung diseases (e.g., idiopathic pulmonary fibrosis and lung granulomatous diseases), and lung malignancies. Lung tissue is protected against ...
متن کاملRegulation of lung manganese superoxide dismutase: species variation in response to lipopolysaccharide.
Lipopolysaccharide (LPS) treatment increases survival of rats, but not of mice, during hyperoxia. Manganese superoxide dismutase (Mn SOD) in the lung plays a critical role in LPS-induced tolerance to hyperoxia in rats. Therefore, we now compared the response of lung Mn SOD with treatment of mice and rats with LPS. LPS treatment of rats increased Mn SOD activity and protein concentration, did no...
متن کاملALUNG May 20/5
Dirami, Ghenima, Donald Massaro, and Linda Biadasz Clerch. Regulation of lung manganese superoxide dismutase: species variation in response to lipopolysaccharide. Am. J. Physiol. 276 (Lung Cell. Mol. Physiol. 20): L705–L708, 1999.—Lipopolysaccharide (LPS) treatment increases survival of rats, but not of mice, during hyperoxia. Manganese superoxide dismutase (Mn SOD) in the lung plays a critical...
متن کاملThe effect of metal deposition on antioxidant enzymes of lens in smokers of Karachi, Pakistan
Background: Blindness due to cataract is a major and important problem in Pakistan. The problem is expected to increase in future due to increase in tobacco smoking. The aim of study was to look for the mechanism associated with metal deposition and its effect on antioxidant enzymes in lens of smokers in Karachi, Pakistan. Methods: 20 cataract patients were randomly selected from Out Patient De...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The European respiratory journal
دوره 24 5 شماره
صفحات -
تاریخ انتشار 2004